ТЕОРЕТИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ РАЗРУШЕНИЯ И Свойств деформированных наноструктур С помощью анализа поля локальных напряжений атомной сетки

<u>О.Е. Глухова</u>*, И.В. Кириллова**, Р.Ю. Жничков***, А.С. Колесникова**, М.М. Слепченков*

*Физический факультет,

Образовательно-научный институт наноструктур и биосистем *Поволжский региональный центр новых информационных технологий *Саратовский государственный университет имени Н.Г. Чернышевского, e-mail: <u>glukhovaoe@info.sgu.ru</u>* Общая схема изучения наноструктур **квантово-механическим методом сильной связи** заключается в следующем: вычисляется полная энергия объекта исходной геометрической конфигурации, для чего формируется гамильтониан и решается алгебраическая проблема собственных значений матрицы, и рассчитывается отталкивательный потенциал взаимодействия ядер и электронов; производится оптимизация атомной структуры.

Равновесные интегралы перекрывания (недиагональные элементы гамильтониана) определяются выражением

$$t_{\alpha,\beta}(r) = t_{\alpha,\beta}(r_0) \left(\frac{r_0}{r}\right)^{n_a} \exp\left[-n_b \left(\frac{r}{r_t}\right)^{n_c} + n_b \left(\frac{r_0}{r_t}\right)^{n_c}\right],\tag{1}$$

а отталкивательный потенциал выражением

$$E_{core}(r) = E_{core}(r_0) \left(\frac{r_0}{r}\right)^{m_a} \exp\left[-m_b \left(\frac{r}{r_c}\right)^{m_c} + m_b \left(\frac{r_0}{r_c}\right)^{m_c}\right].$$
(2)

Здесь r_t и r_c – радиусы отсечки для интегралов перекрывания и отталкивательного взаимодействия, а параметры n_a , n_b , n_c и m_a , m_b , m_c задают форму и крутизну масштабирующих функций (1) и (2), индексы α и β задают тип взаимодействующих электронных облаков, r_0 – равновесное межъядерное расстояние (характерное для данного типа взаимодействующих атомов), r – межъядерное расстояние.

Полной энергией структуры является сумма энергии занятых энергетических уровней E_{bond} и энергией отталкивательного взаимодействия E_{rep} :

$$E_{tot} = E_{rep} + E_{bond} , \qquad (3)$$

$$E_{bond} = \sum_{i=1}^{N_{level}} \left(n_i \cdot E_i + U \cdot \delta_{n_i,2} \right), \tag{4}$$

где E_i – энергия заполненного состояния с номером *i*, число n_i определяет занятость данного уровня (для незанятых оно равно нулю, при полной занятости – двум), N_{level} – число энергетических уровней, терм *U* определяет обменно-корреляционное взаимодействие между двумя электронами, находящимися на одной и той же орбитали (U=3 эВ [4]), $\delta_{n_i,2}$ принимает ненулевое значение, только если $n_i = 2$.

Энергия отталкивательного взаимодействия рассчитывается с помощью формулы (2), определяющей ион-ионное взаимодействие атомов *i* и *j*:

$$E_{rep} = \sum_{i < j} E_{core}(r_{ij})$$

1. Оптимизация исходной атомной структуры (квантово-химический метод сильной связи)

Блок-схема модифицированного метода Хука-Дживса

Блок-схема подпрограммы исследования по образцу

1. Оптимизация исходной атомной структуры (оптимизированный метод Хука-Дживса)

Производительность при оптимизации структуры с переходом с четырехузлового кластера на восьмиузловой возрастает в 1.4 раза Производительность вычислений возрастает в среднем в 1.8 раза при выполнении расчетов параллельным способом в 4 потока по сравнению с последовательным методом

Производительность параллельных вычислений

- 1. Оптимизация исходной атомной структуры.
- 2. Вычисление распределения объемной плотности энергии по атомам.
- 3. Поиск атомной конфигурации, подвергнутой внешнему воздействию, в результате минимизации энергии по координатам.
- 4. Вычисление распределения объемной плотности энергии по атомам структуры, подвергнутой внешнему воздействию.
- 5. Расчет поля локальных напряжений атомного каркаса по разности значений объемных плотностей энергии атомов структуры, подвергнутой внешнему воздействию, и исходной структуры.

Методика расчета поля локальных напряжений заключается в последовательном выполнение нескольких вычислительных этапов

$$w_{i} = \left(\sum_{j(\neq i)} \left(V_{R}(r_{ij}) - B_{ij} V_{A}(r_{ij}) \right) + \sum_{j \neq i} \left(\sum_{k \neq i, j} \left(\sum_{l \neq i, j, k} V_{tors}(\omega_{ijkl}) \right) \right) + \sum_{j(\neq i)} V_{VdW}(r_{ij}) \right) / V_{i} \quad , \tag{5}$$

где $V_R(r_{ij})$ и $V_A(r_{ij})$ – парные потенциалы отталкивания и притяжения химически связанных атомов, определяемые типом атомов и расстоянием между ними; r_{ij} – расстояние между атомами i и j; i и j – номера взаимодействующих атомов; B_{ij} - многочастичный терм, корректирующий энергию взаимодействия пары атомов i - j, учитывая специфику взаимодействия σ - и π - электронных облаков; $V_{tors}(\omega_{ijkl})$ – потенциал торсионного взаимодействия, являющийся функцией линейного двугранного угла ω_{ijkl} , построенного на базе атомов i, j, k, l с ребром на связи i - j (k, l – атомы, образующие химические связи с атомами i, j); $V_{vdw}(r_{ij})$ – потенциал взаимодействия Ван-дер-Ваальса между химически несвязанными атомами; $V_i = \frac{4}{3} \pi r_0^3$ – объем, занимаемый атомом i; r_0 – Ван-дер-ваальсовый радиус атома углерода, равный 1.7 Å.

Напряжение атомного каркаса вблизи атома с номером і рассчитывалось по формуле:

$$\sigma_i = \left| w_i - w_i^0 \right| \,, \tag{6}$$

где w_i^0 – объемная плотность энергии атома графена, находящегося в равновесном состоянии; w_i – объемная плотность энергии атома графена, подвергнутого внешнему воздействию (деформации, появление дефектов и т.п.).

2. Вычисление распределения объемной плотности энергии по атомам и напряжения атомного каркаса вблизи атома

Q.X. Pei Y.W. Zhang, V.B. Shenoy, CARBON 48 (2010) 898–904

GPa

1.82 1.79 0.09 0.06 0.00

Апробация метода (прогнозирование разрушение графена с дефектом гидрирования)

Длина увеличивается (или уменьшается) и фиксируется. По необходимым линейным параметрам оптимизируется геометрическая структура остова и вычисляется энергия вытянутой (или сжатой) структуры. Рассчитывается модуль Юнга:

$$Y = \frac{F}{S} \cdot \frac{L}{\Delta L} \,, \tag{7}$$

где ΔL – удлинение; F – сила, необходимая для растяжения (или сжатия), определяемая формулой

$$F = \frac{2 \cdot \Delta E}{\Delta L} \tag{8}$$

(*ΔЕ* – энергия упругого растяжения (сжатия)); *S* – площадь поперечного сечения.

Псевдомодуль Юнга:

$$Y_P = \frac{F}{P} \cdot \frac{L}{\Delta L}, \qquad (9)$$

где Р – периметр края.

На основе имеющихся данных о растяжении (сжатии) вычисляется коэффициент Пуассона

$$\mu = -\frac{\Delta R}{R} \cdot \frac{L}{\Delta L}, \qquad (10)$$

где *к* – радиус нанотрубки (ширина графеновой наноленты) в основном состоянии; *∧к* – изменение радиуса (ширины наноленты) при деформации.

Расчет модуля Юнга и коэффициента Пуассона

Исследование механических свойств

 Сравнение модулей Юнга углеродных нанотрубок и графеновых структур

Сжатие графеновых нанолент

Графеновые наноленты Моделирование процесса сжатия Nanpribbon with fixed atoms on the ends Zigzag - nanoribbon Width - D Length - L compression Armchair - nanoribbon Width - D Length - L

Сжатие графеновых нанолент

Наноленты и наночастицы 96

Сжатая нанолента: 96% исходной длины

Сжатие графеновых нанолент

Растяжение графеновой ленты

Исследование деформации и прогнозирование образования дефектов и разрушения графеновых нанолент

Исследование стабильности и прогнозирование разрушения УНТ сложных структур

УНТ armchair (10,10) и (30,30)

GPa

8-14 6-7 4-5 1-3 0

Разрушение тонких УНТ с внутренними перемычками

Прогнозирование возникновения дефектов при деформации атомной сетки

Возникновение дефекта

Исследование влияния кривизны атомной сетки на адсорбционные свойства

Саратовский государственный университет имени Н.Г. Чернышевского

Спасибо за внимание!